[1]索迹,祁春清.基于神经网络的双馈发电机矢量控制[J].苏州市职业大学学报,2008,(03):16-19.
 SUO Ji,QI Chun-qing.The DFIG Vector Control Based on Neural Network[J].,2008,(03):16-19.
点击复制

基于神经网络的双馈发电机矢量控制
分享到:

《苏州市职业大学学报》[ISSN:1008-5475/CN:32-1524/G4]

卷:
期数:
2008年03期
页码:
16-19
栏目:
电子与信息技术
出版日期:
2008-09-25

文章信息/Info

Title:
The DFIG Vector Control Based on Neural Network
文章编号:
1008-5475(2008)03-0016-0
作者:
索迹祁春清
(苏州市职业大学电子信息工程系,江苏苏州215104)
Author(s):
SUO Ji QI Chun-qing


(Suzhou Vocational University, Suzhou 215104, China)
关键词:
关键词:双馈发电机神经网络自适应PID 控制解耦控制
Keywords:
Key words: doubly-fed induction generatorneural networkadaptive PID controldecoupled control
分类号:
中图分类号:TM315
文献标志码:
A
摘要:
摘要:分析了双馈发电机矢量控制原理,提出了基于神经网络自适应PID 控制器对双馈发电机的控制策略。根据扰动的变化,给出相应的输出反馈增益,使得系统能够以满意的阻尼比,无静态误差地跟踪不同的期望工作点,对扰动具有一定的抑制作用。仿真结果表明,该系统具有良好的动态性能。
Abstract:
Abstract: Variable control theory for doubly-fed induction generator ( DFIG ) is analyzed in this paper, and the control strategy of an adaptive PID controller based on neural network to realize the speed control of DFIG is proposed. According to the change of disturbance variables, the corresponding output feedback gain is obtained, and this makes the system to track different expectation working spot with the satisfied damp ratio and zero static error. Simulation results also show that this system has high dynamic performance.

相似文献/References:

[1]尚 丽,杜吉祥,翟传敏.稀疏编码算法概述[J].苏州市职业大学学报,2009,(01):5.
 SHANG Li,DU Ji-xiang,ZHAI Chuan-min.Overview of Sparse Coding Algorithm[J].,2009,(03):5.
[2]宋秦中,宋新玲.神经网络解耦控制器在热网流量调节中的应用[J].苏州市职业大学学报,2012,(03):17.
 SONG Qin-zhong,SONG Xin-ling.Application of Decoupling Controller of Neural Networks to Heating Networks Flow Regulation[J].,2012,(03):17.

更新日期/Last Update: 2008-10-13